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1. Introduction

In structural geology a large number of studies have dealt

with flow mechanics of inclusion-matrix systems over the last

couple of decades. Among these one set of investigations

derive analytical solutions, whereas another approach is to

generate numerical solutions by means of the finite element

method (FEM). Both lines of study compare the results with

that obtained from analogue experiments.

Two types of flow are known to prevail around a circular

inclusion embedded in a viscous matrix undergoing simple

shear: one with eye-shaped separatrix and the other with bow-

tie-shaped separatrix. Flows with both eye- and bow-tie-shaped

separatrix may be obtained from analytical solutions by

varying the ratio of simple and pure shear in a general type

of deformation (Mandal et al., 2001). However, analytical

solutions for only simple shear deformation yield flow only

with eye-shaped separatrix geometry. Marques et al. (2005)

and Mandal et al. (2005) addressed the issue of development of

bow-tie-shaped separatrix around a circular inclusion

embedded in a viscous matrix undergoing only simple shear.

These studies attempted to resolve the issue using FEM

considering two parameters: (1) relative dimension of the

inclusion with respect to that of the inclusion-matrix system,

and (2) model geometry of the inclusion-matrix system. Both

the investigations used FEMLAB for the purpose.
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Mandal et al. (2005) reviewed all continuum models and

showed under which circumstances a bow-tie-shaped separa-

trix may arise. However, it appears from the feedback of

Marques et al. (2006) that there is a necessity for further

elaboration of the principles of finite element modelling of an

inclusion-matrix system. The results obtained from FEM

should ideally converge only when the associated parameters

are uniformly constrained. Differences in the assumptions for

FEM experiments would yield diverse results, and may lead

to misinterpretation (e.g. Marques et al., 2006). Mandal et al.

(2005) presented a number of results based on finite element

models, to point out how choice of geometrical parameters and

boundary conditions can lead to variability in the flow patterns

observed in models. It was not the aim of Mandal et al. (2005)

to provide a complete model. In the following sections we

address more explicitly how different variables should be

considered while running FEM experiments.
2. Basic premises of modelling inclusion-matrix systems

Finite element modelling of a deforming system is primarily

based on the continuum mechanics of multiply-connected

regions, considering boundary conditions imposed at the

contours of desired regions, here (1) the inclusion-matrix

boundary (R) and (2) the periphery of the model (B), which is

considered as a quadrilateral (Fig. 1). In all studies the

condition imposed on R is that the inclusion rotates at a rate

half the simple shear. Now, as regards to the model boundary

the contour B can be split into B1 and B2 parallel and

perpendicular to the shear direction, respectively. In the present

context we discuss how a choice of the ratios B1/B2 (Ar), B1 or

B2/inclusion diameter (Dr) and conditions at B1, B2 may lead

to variability in the flow pattern. Marques et al. (2006) claims

that the parameter Dr of Mandal et al. (2005) is confused with
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Fig. 1. Consideration of different contours in a multiply connected region. Note

that B is the model boundary and R is the inclusion-matrix boundary.
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the parameter S of Marques et al. (2005), which is a measure of

relative model dimension across the shear direction (i.e. B2/

inclusion diameter). However, we used Dr with a completely

different physical consideration and, therefore, Dr should not

be compared with S in any way. Dr is a measure of model area

(defined by the dimensions both along and across the shear

direction) relative to that of the inclusion. This was clearly

stated in Mandal et al. (2005).

We reiterate that the model boundaries do not define any

physical surface, like the interface between a shear zone and its

wall rocks. For example, one may intend to study the structures

around a centimetre-scale clast within a shear zone several

kilometres wide, where the clast-shear zone thickness ratio

would be in the order of 106. However, structural geologists

usually employ models of smaller dimensions considering the

bulk kinematics at the model boundaries, which naturally do

not mark any physical boundary, like a shear zone boundary.

One aim of Mandal et al. (2005) was to show that model results

would depend on the choice of model size relative to that of an

inclusion. This is different from the objective of Marques et al.

(2005), who intend to show the effect of inclusion dimension

relative to shear zone width (with physical boundaries) on the

flow pattern around an inclusion, using specific models with

length much larger than the width (B1 much greater than B2).

On the other hand, Mandal et al. (2005) have chosen model

boundaries to show the effect of different model parameters

(B1ZB2, B1OB2, B2OB1) on the flow pattern obtained in

model runs, as commonly done in FEM work.
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Fig. 2. (a) Plot showing the distance of stagnation points from the centre of

inclusion (Ds) with increasing length (L) of the model. (b) Profiles of velocity

component along the y-direction (across shear direction) at xZK2 for different

aspect ratios (Ar) of model. Inclusion diameter and model width were 1 and

100, respectively. Models were deformed under ‘homogeneous simple shear’.
3. Effects of model parameters

It is understandable that the flow resulting from imposed

boundary conditions will depend on the positions of both B1

and B2 with respect to the inclusion. Therefore, the relative

distance of B1 (equivalent to the S parameter of Marques et al.

(2005)) would be necessary, but not sufficient in analyzing the

flow in any finite system. We shall show later that the physical

feature of flow, e.g. position of stagnation points, for a

particular B1 position can vary with changing B2 position
(Fig. 1). However, one can keep the position of B2 constant at

large distances and show how the flow can change with varying

B1 as done by Marques et al. (2005). Mandal et al. (2005)

considered models with finite dimensions, as is commonly

done (Masuda and Mizuno, 1996; Treagus and Lan, 2003), and

has shown the effects of the two geometrical parameters (Dr

and Ar) under different dynamic and kinematic conditions

imposed at the model boundaries.

Mandal et al. (2005) demonstrated how the streamlines of

flow can qualitatively change with increasing lateral dimension

of model (B1), while the dimension across the shear direction

(B2) remains constant (fig. 7b and c in Mandal et al., 2005). An

example is cited here, which shows that the position of

stagnation points varies as B1 is changed, while B2 remains

unchanged (Fig. 2a). For a given B2, however, the distance

of stagnation points does not show any monotonic variation or

any particular trend line with increasing lateral dimension of

the model. The nature of such variations needs to be further



Fig. 3. Physical model experiment with homogeneous rectangular pitch block

undergoing dextral shear deformation. The lateral boundaries (left and right) of

the model were kept free for simulating unconstrained boundary conditions.

Note that the grids are deformed heterogeneously. Scale bar: 1 cm.
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investigated and analyzed from a physical point of view. The

ratio B1/B2 will have influence on the flow pattern even when

the lateral boundaries are located at a large distance. This is

also reflected in the velocity profiles taken at a finite distance

from the inclusion (Fig. 2b). For a constant relative model

width (i.e. constant S of Marques et al., 2005), the profile of

y-velocity component, for example, significantly varies with

increasing model length, i.e. with increasing model aspect

ratio. Based on these observations, we concluded that the effect

of both the model dimensions in performing numerical

experiments should be taken into account. Here we presented

results considering a particular type of boundary condition

(condition 1: homogeneous shear). Evidently, the effect of

shear-along model dimension will be different for different

boundary conditions, as shown in Mandal et al. (2005).

4. Concluding remarks

In their comment, Marques et al. (2006) raised some

additional points. They claim that fig. 4a of Mandal et al.

(2005) is erroneous. However, in this figure the lines with

arrows are shown only to represent the direction of particle

motion under dextral, homogeneous simple shear without any

connotation to the magnitude of velocity vector, as mentioned

in the caption. The lines simply show the pattern of

streamlines, tangents to which give the instantaneous direction

of velocity vectors in space. Marques et al. (2006) mis-

interpreted the figure, possibly because the arrows are placed at

the centre of the streamlines.

We completely disagree with Marques et al. (2006) on the

basic principle of shear boxes, which are widely used in soil

mechanics and analogue experiments in structural geology.

In the conventional set-up of a shear box, model deformation

is not imposed by moving only the two plates disposed

parallel to the shear direction. In order to attain homo-

geneous simple shear in the model, all the four sides have to

be set in motion (see Ildefonse et al., 1992; Treagus and

Sokoutis, 1992). Even in numerical simulations, constant

velocity boundary conditions are imposed on all the four

boundaries of the model for the shear strain rate to resemble

“the situation in a shear-box experiment, where deformation

is imposed by movement of rigid boundaries on all sides”

(Bons et al., 1997, p. 34; see also Treagus and Lan, 2003).

We also disagree with the proposition of Marques et al.

(2006) that the lateral walls in a shear box “only serve to

avoid collapse of the viscous matrix under its own weight”.

The purpose of using lateral plates is not only to restrict the

lateral flow of the viscous material under gravity, but also to

counter-balance the torque of the model developed due to

oppositely moving plates. Physical experiments on a viscous

block with free lateral faces does not produce homogeneous

simple shear strain (Fig. 3), which is also evident from the

flow pattern observed in finite element models with the same

setup (Dresen, 1991; Mandal et al., 2005).

Marques et al. (2006) is correct in stating that in a ring shear

apparatus the shear strain gradient is not homogeneous simple

shear as obtained in a square shear box. Generally, in a ring
shear apparatus only the central part of the model is taken into

consideration where the velocity gradient across the shear

direction can be assumed to be approximately constant and the

straight-out condition prevails as well (Bons et al., 1997).

Marques et al. (2005) state that the length of the model was

at least 40 times the diameter of the inclusion. However, they

did not provide any information regarding the aspect ratios of

individual models in their figs. 7 and 8. Our results indicate that

changes in the model shape in Marques et al. (2005) may

induce changes in the flow around a rigid inclusion even when

the length of the model considerably exceeds the diameter of

the inclusion.

Marques et al. (2005) refer to flow in their model as either

homogeneous simple shear (section 3.1 and discussion), or as

‘straight-out’. However, these two conditions are not identical.

The ‘straight-out’ condition is widely employed for simulating

directional fluid flow at the outlet of an open pipe system. This

condition does not take into account how the velocity

component in the x-direction varies in the y-direction. The

condition only ensures that the fluid does not have a component

of motion in the y-direction. On the other hand, homogeneous

simple shear implies that the velocity in the x-direction varies

linearly with y, while at the same time there is no velocity

component in the y-direction. This is the condition that reflects

bulk kinematics of large-scale natural shear zones with simple

shear and appears to be suitable for simulation of shear zone

structures (e.g. Treagus and Lan, 2003). However, the

dynamics or kinematic conditions at the lateral boundaries

may vary depending on the physical situation and the choice of

the modellers (unconstrained—Dresen, 1991; homogeneous

shear—Masuda and Mizuno, 1996; Pennacchioni et al., 2000;
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Treagus and Lan, 2003; straight-out—Marques et al., 2005).

Marques et al. (2006) hinted that the straight-out condition is

the most suitable one in models but it is not clear why, either

from a modelling or a geological point of view.

In fig. 2a of Marques et al. (2006), they plotted x- and

y-velocity components at xZK1 keeping the radius of the

inclusion as 1. This means that they have chosen a DR value of

1 instead of 2 and, therefore, their velocity profile lies at the

inclusion boundary. However, it is understandable that the

velocity profile will depart from linearity, as the deformation at

any finite distance from the inclusion is heterogeneous. In this

context we must clarify that the boundary condition (homo-

geneous shear) that we applied at the lateral walls, does not aim

to impose the velocity condition produced by the hetero-

geneous velocity field around the inclusion.

Marques et al. (2006) claim that the flow pattern will always

be a bow-tie-shaped separatrix since the “stagnation points

must also exist in infinite shear zones, but at an infinite distance

to each side of the inclusion”. The assumption that the

stagnation points are located at infinity implies that the regime

of back flow essentially vanishes and therefore the flow cannot

be described ideally as bow-tie shaped.

Finally, the study of Mandal et al. (2005) attempted to show

that different model parameters and boundary conditions exert

a strong influence and thereby lead to variability in the flow

pattern. FEM can therefore only be used taking all these factors

in account for analyses with either 2-D or 3-D models.
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